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SPATIAL COMPLIANCE MEASUREMENT OF A CLAMPING TABLE  

WITH INTEGRATED FORCE SENSORS 

Force sensor integration into machine components is a promising approach to measure spatial process forces, 

especially, when regarding hexapod structures and kinematics. Rigid still-standing hexapod frameworks, such as 

clamping tables, are particular suitable for this approach, as no dynamic influences need to be taken into account 

within the measurement model and they allow a measurement in 6 degrees of freedom. On the other hand,  

the stiffness of rigid frameworks is reduced by force sensor integration significantly. In addition, many approaches 

apply joints or flexure hinges to reduced lateral forces and improve the measuring quality, which reduce  

the stiffness even more. In this contribution, the compliance of a clamping table with integrated force sensors and 

flexure hinges is determined by experimental measurements using a multiline laser interferometer, by analytic 

calculation, and by finite element simulation. In conclusion, the amount of stiffness reduction by force sensors and 

flexure hinges is quantified and different methods for compliance determination are compared. 

1. INTRODUCTION AND APPROACH 

Today, many manufacturing applications require in-process measurement of forces and 

moments, such as process diagnosis and monitoring, quality assurance, or adaptive process 

control. With the extended movability of modern machine tools, such as five-axis kinematics 

or hexapods, the measurement of spatial forces and moments in up to 6 degrees of freedom 

(DoF) is requested in particular. Hereby, force sensor integration into hexapod structures and 

kinematics is particularly suitable for the reasons of 6 DoF- and nearly frictionless 

measurement as well as lightweight design. Because no dynamic influences need to be taken 

into account, rigid unmoved bar frameworks, e.g. clamping tables, are advantageous with 

regard to low modelling effort to obtain the measurement model and, therefore, the preferred 

solution in the state of the art, Fig. 1. 

First contributions that use Stewart or hexapod structures as force sensors were 

presented in the 80s and 90s [1–6]. In the following years, the topic has been studied further 
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[7–9], including first finite element simulations [10, 11] and first evaluations on flexure 

hinges [12, 13]. The most promising actual works show application-oriented results, such as 

a multicomponent calibration system [14, 15], a sensor for heavy duty applications [16–19], 

an endoscope with integrated force measurement for minimal invasive surgery [20, 21], or  

a measuring system for industrial applications [22]. Further, the approach has been evolved 

to moving hexapod structures and hexapod kinematics [23–27]. 

 

Fig. 1. Hexapod-based clamping table with integrated force sensors and flexure hinges (left); Details on mechanical 

design with sensors and flexure hinges (right, top), with sensors only (right, mid), and without sensors (right, bottom) 

Nevertheless, two main aspects are not discussed in the state of the art: Firstly, the 

stiffness loss due to the force sensor integration, when compared to rigid frameworks and, 

secondly, a comparison of methods for simple compliance evaluation in design stage. As the 

used force sensors are based on strain gauges, they can be regarded as springs, which may 

reduce the stiffness of rigid frameworks significantly. In addition, many approaches use joints 

or flexure hinges to reduced lateral forces, which cannot be measured by the force sensors, to 

improve the measuring quality [12, 15]. In the consequence, the stiffness of the frame is 

reduced even more, which contradicts the general demands of high accuracy and stiffness in 

machine tool industry. For the force sensor integration into a hexapod machine tool, the 

resulting loss of stiffness is very limited (5–10%), as the sensor stiffness is much higher than 

the stiffness of other components, such as the drive train [26]. 

However, the effective amount of stiffness reduction due to force sensor integration in 

rigid bar frameworks and the influence of the flexure hinges are open research questions.  

The new contribution of this paper is the compliance evaluation of a hexapod-based clamping 

table in three configurations that include force sensors and flexure hinges by different 

methods. At first, the three used methods for compliance evaluation are introduced (Section 2) 

and, next, the resulting compliances as well as the methods are assessed (Section 3).  
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2. METHODS 

To evaluate the compliance of the rigid hexapod-based clamping table, three methods 

are evaluated and compared: first, the experimental evaluation by load application and 

displacement measurement (Section 2.1), second, the analytic calculation by serial and 

parallel connection of the component compliances (Section 2.2), and, third, the computational 

calculation by finite elements (FE) simulation (Section 2.3). 

The clamping table consists of six identical legs with individual lengths that allow for 

an individual configuration of its pose (position and orientation) with respect to the 

application, Fig. 1. The steel bars are made of hydraulic pipes with an inner diameter  

of 30 mm and an outer diameter of 38 mm in which M20 thread rods are screwed-in. At the 

top as well as at the bottom, ball heads for clamping are screw-in or welded-on, respectively. 

Multiple configurations of the table with (wS) and without (oS) force sensors as well as with 

(wH) and without (oH) flexure hinges are modelled and built. Figure 2. summarises the 

evaluated variants in CAD and FEM drawings. Because all connections are clamped or 

welded, the initial framework without sensors and flexure hinges (oSoH) will be regarded as 

rigid and the evaluations are made with respect to this initial state. Force sensor are integrated 

by the use of M12 external threads and adequate adapter pieces. Flexure hinges are realised 

by reducing the rod diameter from 22 mm to 6 mm, Fig. 2 right. 

 

Fig. 2. Details of Axis 5 and 6 of the clamping table in CAD (top) and FE model (bottom) in the variants: without force 

sensors without flexure hinges (oSoH), with force sensors without flexure hinges (wSoH) and with forces sensors with 

flexure hinges (wSwH) 

2.1. EXPERIMENTAL EVALUATION 

At first for experimental compliance evaluation, forces are applied to the clamping table 

by a hexapod machine tool, Fig. 3 left, and the resulting displacements are measured with 

 the help of the absolute laser interferometer Etalon Multiline, Fig. 3 right. The setup for the 

displacement measurement including lasers and reflectors is presented in Fig. 4. 
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Fig. 3. Force application to the clamping table with the help of a hexapod machine tool (left) and displacement 

measurement with the Etalon Multiline absolute laser interferometer (right) [28] 

 

Fig. 4. Laser and reflector configuration for spatial displacement measurement of the clamping table (wSwH), 9 laser 

collimators (L) and 3 reflectors (R) 

As shown by Eq. (1), a position change of the hexapod machine tool ∆𝒑Hex results in  

a spatial force applied to the clamping table ∆𝒇T, which reacts according to its compliance 

𝑵T with a displacement ∆𝒙T  that finally can be detected by changing laser lengths ∆𝒍. 

∆𝒑Hex
𝑲Hex
→   ∆𝒇T

𝑵T 
→ ∆𝒙T

𝑅𝑇Laser
→     ∆𝒍. (1) 
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The requested compliance of the framework 𝑵T can be obtained in two steps. First, the 

pose change of the table ∆𝒙T is calculated from the change of the laser lengths ∆𝒍 for every 

load situation. To do so, a Jacobian matrix is requested that fulfils ∆𝒍 = 𝐉L
−1∆𝒙T, which can 

be found by geometric analysis of the setup, Fig. 5. 

 

Fig. 5. Modelling of table and laser kinematics 

The inverse problem 𝑅𝑇Laser that describes the vector of the laser beam 𝑗 on the base  

of the position ( 𝒐T
B ) and orientation ( 𝑹T

B ) of the table platform calculates for all 𝑗 = 1…9 

lasers to 

𝒍𝑗
B = 𝒐T

B + 𝑹T
B 𝒐R𝑗

T − 𝒐L𝑗
B . (2) 

The derivation of Eq. () with respect to time leads to the geometric Jacobian 𝐉L
−𝑇 (6×9)

 of 

the setup  

𝐉L
−𝑇 = (

𝐧1 … 𝐧9
𝐡1 × 𝐧1 … 𝐡9 × 𝐧9

) (3) 

based on the vectors 𝒏𝑗
B  und 𝒉𝑗

B  that are defined by the placement of the collimators and 

reflectors in non-deformed state ({𝐵} ≜ {𝑇}) as following: 

𝒏𝑗
B = ( 𝒐R𝑗

B=T − 𝒐L𝑗
B )/| 𝒍𝑗

B | 

𝒉𝑗
B = 𝒐R𝑗

B=T . 
(4) 

Due to the relative measurement of the deformed state related to the original state, these 

coordinates do not need to be precise. On the contrary, a rough estimate with an accuracy  

of approx. 5 mm is sufficient, see Table 1 right. Also, the change of the Jacobian due to the 

deformation can be neglected.  

Finally, the best estimate of the pose change ∆�̂�T is obtained by least squares, after 

including the measurements ∆�̌� with  

∆�̂�T = (𝐉L
−1𝐉L

−𝑇)−1𝐉L
−1∆�̌�. (5) 
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The result contains position and orientation in the form ∆�̂�T = ( 𝒐T
B 𝑇

 𝝓T
B 𝑇

)
𝑇

, where  

the rotation matrix of the orientation can be approximated using 𝑹T
B ≈ 𝟏 + 𝑺( 𝝓T

B ) because  

of small angles. When using the pose definition { 𝒐T
B , 𝑹T

B } and the inverse transformation 

Eq. (2) the theoretical laser lengths can be calculated, which is used for validation. 

Table 1. Coordinates of Base (S) and Platform points (H) of the clamping table as well as of the lasers (L) and reflectors 

(R) in mm, compare to Fig. 4 

Table Joint Positions  Laser/Reflector Positions 

 X Y Z   X Y Z 
BoS1 540.2 -281.2 -844.7  BoL1 -370 -140 -763 
BoS2 43.9 591.1 -843.0  BoL2 -435 -75 -758 
BoS3 -36.1 591.6 -842,7  BoL3 -355 -300 -758 
BoS4 -543.4 -2743 -841.0  BoL4 385 -245 -758 
BoS5 -503.8 -3438 -841,1  BoL5 415 -205 -758 
BoS6 499.7 -350.2 -844.6  BoL6 285 -155 -763 
ToH1 383.5 284.7 -153.7  BoL7 35 425 -758 
ToH2 303.5 284.7 -153.7  BoL8 40 310 -763 
ToH3 -296.5 284.7 -153.7  BoL9 -95 435 -758 
ToH4 -376.5 284,7 -153.7  ToH1 -440 -145 -183 
ToH5 -36.5 -105.3 -148.7  ToH1 475 -110 -133 
ToH6 435 -1053 -148.7  ToH1 15 430 -133 

 

In the second step, the compliance matrix 𝑵T is calculated using all load situations ∆�̌�T,𝑙 

and their corresponding identified displacements ∆�̂�T,𝑙 in a way that fulfils for every load 

situation 𝑙 = 1…m the compliance model 

∆�̂�T,𝑙 = 𝑵T∆�̌�T,𝑙 . (6) 

To identify the unknown elements 𝑛T,𝑖𝑗 of 𝑵T, Eq. (6) is converted to the following 

form, where the unknowns appear as vector 𝒏T. 

∆�̂�T,𝑙 = �̌�T,𝑙𝒏T =

(

 
 
 
 
 
 

∆�̌�T,𝑙
𝑇 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 ∆�̌�T,𝑙
𝑇 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 ∆�̌�T,𝑙
𝑇 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 ∆�̌�T,𝑙
𝑇 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 ∆�̌�T,𝑙
𝑇 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 ∆�̌�T,𝑙
𝑇
)

 
 
 
 
 
 

(

 
 
 
 

𝑛T,11
⋮

𝑛T,16
𝑛T,21
⋮

𝑛T,26
⋮ )

 
 
 
 

. (7) 

Again, least squares lead to the best estimate of the unknowns after stacking models and 

measurements, with 

�̂�T = (�̌�T
𝑇�̌�T)

−1
�̌�T
𝑇∆�̂�T. (8) 
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The compliance matrix �̂�T is obtained by resorting �̂�T, and the stiffness matrix �̂�T by 

inversion of �̂�T. 

Analogue to similar identification problems, observability indices and optimisation 

criteria can be used to plan and evaluate meaningful load situations, which maximise 

sensitivity and linear independency of the parameters with regard to the measurements [24]. 

In the presented application, the experiments are designed in a way that excites all 

components of the compliance matrix equally by symmetric distributed load situations,  

Table 2. 

Table 2. Experimental plan and variation of the load situations 

No. Position in mm Load Direction 

 X Y Z X Y Z A B C 

1 40 0 0 +      

2 -40 0 0 –      

3 0 35 0  +     

4 0 -35 0  –     

5 0 0 0   +    

6 0 0 0   –    

7 40 0 230 +    +  

8 -40 0 230 –    –  

9 0 35 230  +  –   

10 0 -35 230  –  +   

11 300 0 0  –    – 

12 300 0 0  +    + 

13 300 0 0   + +   

14 300 0 0   – –   

15 300 0 230  –  +  – 

16 300 0 230  +  –  + 

17 0 300 0 +     – 

18 0 300 0 –     + 

19 0 300 0   +  –  

20 0 300 0   –  +  

21 0 300 230 +    + – 

22 0 300 230 –    – + 

The 22 experiments are performed for the presented variants of the clamping table 

(oSoH: without sensors and without flexure hinges, wSoH: with sensors and without flexure 

hinges, wSwH: with sensors and with flexure hinges) with one repetition. In doing so,  

the force is increased in 26 (wSwH) and 14 (wSoH, oSoH) steps, respectively, up to 2 kN and 

reduced in a similar manner. By the integrated force sensors (if present) and an additional 

force sensor, the applied forces are determined, where the applied moment results from  

the position of the force application due to the present lever, Table 2. The force measurement 

by the integrated force sensors in the clamping table allows for the determination of the lever 

by the twist and, therefore, a validation of the measuring setup.  
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Based on the control integration of the force and laser measurement, the experiments 

are fully automated: by the use of G-Code, the hexapod moves, which applies the force, and, 

after a short wait time, the force and laser measurements are triggered via M-commands. 

2.2. ANALYTIC CALCULATION 

Next, the table compliances shall be calculated analytically by serial and parallel 

connection of the component stiffnesses. As the longitudinal forces constitute the main 

influence in bar frameworks, the stiffness of one leg 𝑘q,𝑖 calculates from serial connection  

of the parts of the steel bar 𝑘Steelbar
−1 , the force sensor 𝑘Sensor

−1 , and two flexure hinges 𝑘FlexHin
−1 , 

if present 

𝑘q,𝑖 = (𝑘Steelbar_bottom,𝑖
−1 + 𝑘Steelbar_top,𝑖

−1 + 𝑘Sensor
−1 + 2 𝑘FlexHin

−1 )−1. (9) 

The used force sensors ALTHEN F256 5 kN have a longitudinal stiffness of 𝑘Sensor =
78 N/µm, and the stiffness of the steel bars and flexure hinges can be taken from 𝑘𝑖 = 𝐸𝐴𝑖/𝑙𝑖. 
Hereby, the diameters are 𝐷 = 18.38 mm (M20 pitch diameter) and 𝐷 = 6 mm (flexure 

hinges), respectively. 𝑙𝑖 is either the length of bar 𝑖 = 1…6 or set to 2 mm for the flexure 

hinges, respectively.  

To calculate the Cartesian stiffness 𝑲x of the parallel-connected bars, the sensor 

directions need to be taken into account. This is performed by the use of the geometric 

Jacobian 𝑱T of the table framework 

𝐉T
−𝑇 = (

𝐧1 … 𝐧6
𝐡1 × 𝐧1 … 𝐡6 × 𝐧6

), (10) 

Where, now, 𝐧𝑖 is the unit vector that express the direction of force sensor i  

𝒒𝑖
B = 𝒐T

B + 𝑹T
B 𝒐H𝑖

T − 𝒐S𝑖
B . 

   𝐧𝑖 = 𝒒𝑖/|𝒒𝑖|, 
(11) 

and 𝐡𝑖 is the corresponding lever with respect to the base frame {𝐵} [24]  

𝐡𝑖 = 𝑹T
B 𝒐H𝑖

T . (12) 

The positions of the joints 𝒐S𝑖
B  and 𝒐H𝑖

T  are constant and can be easily obtained from 

mechanical design, compare Fig and Table left. 

Based on the static force transformation  

between sensor coordinates 𝒇q and Cartesian coordinates 𝒇x, the derivation of Eq. (13) and 

insertion of Hooke’s law with 𝛿𝒇q = 𝑲q𝛿𝒒 and 𝛿𝒇x = 𝑲x𝛿𝒙 leads, with 𝛿𝒒 = 𝑱T
−1𝛿𝒙,  

to the stiffness transformation  

𝑲x = 𝑱T
−𝑇𝑲q 𝑱T

−1 +𝑲CCT. (14) 

𝒇x = 𝑱T
−𝑇𝒇q (13) 
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𝑲CCT is named Conservative Congruence Transformation [29] and can be neglected for stiff 

frameworks, as it describes the change of the Jacobian due to the deformation of the 

framework under load. 

A representation of the distribution of measuring sensitivity and stiffness of the 

framework within the Cartesian space can be obtained by the sensitivity and stiffness hyper-

ellipsoids: Inserting the force transformation 𝒇q = 𝑱T
𝑇𝒇x into a force unit sphere in sensor 

coordinates 𝒇q
𝑇𝒇q = 1 gives the Cartesian forces based on the sensor directions 

𝒇x
𝑇(𝑱T𝑱T

𝑇)𝒇x = 1. (15) 

Hereby, the six-dimensional hyper-ellipsoid 𝑱T𝑱T
𝑇 represents the Cartesian sensitivity of the 

force measuring system. The stiffness hyper-ellipsoid can be produced in a similar manner: 

By inserting 𝛿𝒇q = 𝑲q𝛿𝒒 into the static force transformation, the stiffness sphere 

𝛿𝒒𝑲q
𝑇𝑲q𝛿𝒒 = 1 results, and, finally, the stiffness hyper-ellipsoid [25] 

𝛿𝒙𝑻𝑱T
−𝑇𝑲q

𝑇𝑲q𝑱T
−1𝛿𝒙 = 𝛿𝒙𝑻𝑘q

2(𝑱T
−𝑇𝑱T

−1)𝛿𝒙 = 1. (16) 

For equal sensors and dominating longitudinal direction of action, the diagonal matrix 𝑲q can 

be reduced to a scalar, and the stiffness hyper-ellipsoid is 𝑘q
2(𝑱T𝑱T

𝑇)−1, which is the inverse  

of the sensitivity hyper-ellipsoid. Finally for independent forces and moments, 𝑱T can be split 

into two displayable three-dimensional ellipsoids for forces and moments [30] 

𝒇q = 𝑱T,F
𝑇 𝒇x + 𝑱T,M

𝑇 𝒎x. (17) 

 Figure 6 shows the resulting ellipsoids for the clamping table. The force ellipsoids 

𝑱T,F𝑱T,F
𝑇  show a higher stiffness (lower sensitivity) in Z-direction, whereas the moment 

ellipsoids 𝑱T,M𝑱T,M
𝑇  indicate nearly homogeneous (sphere-like) behaviour in the rotational 

directions.  

 

 
 

Fig. 6. Sensitivity (blue) and stiffness (yellow) ellipsoids for force (left) and moment (right) of the clamping table 

The calculation of further technical values, such as range, resolution, or overload, as 

well as methods for the algorithmically optimisation of hexapod structures with integrated 

force sensors are presented in [25]. 
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2.3. FE-SIMULATION 

Finally, the table compliance shall be evaluated by finite elements simulation. The FE 

model bases on the CAD model of the table. In the first step, the design is simplified by 

eliminating irrelevant details, such as drill holes, to improve meshing quality and computation 

time. Next, boundary conditions with respect to the mounting of the components, e.g. the ball 

heads, are implemented, and multiple components are merged to obtain fewer parts. After 

introducing support conditions relative to the ground and parametrizing stiffnesses, e.g. for 

the force sensors, meshing and load application can be done.  

Now, different load situations and the corresponding displacement measurements are 

implemented by the use of the FE-system Solidworks Simulation. The table compliance is 

evaluated in the same way as described for the experimental evaluation in Section 2.1 by 

simulating specific load situations according to the experimental plan in Table 2 and acquiring 

the resulting table displacement. Figure 7. shows exemplary results for the experiments 5 

(– 𝑍-load) and 20 (– 𝑍 + 𝐵-load), respectively, as wells as for the table configurations oSoH, 

wSoH, and wSwH. Finally, the spatial compliance matrix of the table is calculated from loads 

and displacements as described in Section 2.1. 

Exp. oSoH wSoH wSwH 

5 

   

20 

   

Fig. 7. Exemplary simulations with the FE-Model for different table setups and load situations (Exp: experiment, 

compare experimental plan in Table 2) 

3. RESULTS 

 Figure 8 presents measuring results for forces and moments as wells as displacements 

on the example of the clamping table with force sensors and with flexure hinges (wSwH) in 

+X/+B direction (experiment 7). While the measured forces and moments match the direction 
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of their application, the direction of the displacement can be different due to non-diagonal 

components of the compliance matrix. 

Further, the plot shows that in the practical setup non-linearity and hysteresis are very 

small and can be neglected, which is important to allow the extraction of meaningful 

compliances from the curves. Against this backdrop, and including force and displacement 

measurement in 6 DoF, small deviations in the experimental setup and force application are 

acceptable, and the compliance measurement is very robust. 

  

Fig. 8. Measuring results on the example of the clampling table with force sensors and with flexure hinges (wSwH) in 

+X/+B direction (experiment 7): left: measured forces and moments as well as identified displacements in position and 

orientation; right: spatial displacement at maximal force (black and red: table and lasers in start position, blue and 

green: table and lasers in deformed position) 

With the use of the demonstrator hexapod machine tool Felix I, also other integrated 

force sensors in the end-effector platform (1b) and in the struts (2b) are available for 

comparison as well as the commercial force/torque sensor at the end-effector (R), see  

[25, 27]. As one additional result of the experimental studies, the various integrated force 

measuring systems do not lead to significant differences. Hereby, the table forces and torques 

are already in table coordinates, the forces acquired by the systems (R), (1b) and (2b) must 

be transformed to table coordinates, and the moments calculated by the known lever.  

Finally, Table 3 presents the resulting stiffness matrices for the three variants of the 

clamping table determined by the three methods calculation, simulation, and experiment. All 

approaches show realistic results in a similar range. When compared to the experiment, both 

theoretical approaches lead to higher stiffness values, because not all influences, such as gaps, 

are modelled.  

As main result, the integration of force sensors into the presented rigid framework leads 

to a stiffness reduction of 45% (experiment). The analytic calculation gives an equal result 

with 44.9%, and the FE simulation a slightly higher value with 57.2%. Flexure hinges on the 

other hand, reduce the stiffness by 3.6% (experiment), 2.9 %(calculation) or 8.5 % 

(simulation), respectively.  
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Table 3. Comparison of analytical, simulative and experimental determined stiffness matrices �̂�𝐓 in N/µm  

of the clamping table in the configurations oSoH, wSoH, wSwH  

 

The FE simulation approach proves itself as time consuming in modelling and 

simulation as well as expensive with regard to the computational costs. Further, the results 

are sensitive with respect to details in modelling, parametrisation and meshing. Not all 

necessary parameters are easy to obtain. Where the longitudinal stiffness of the force sensors 

can be taken from the datasheet, the lateral stiffness has been acquired from separate 

experiments. Also, the clamping within the spherical bearings and the screw connections are 

hard to model sufficiently. With regard to the differences to the experimental results and the 

good correlation of the simple analytic results, on the other hand, the efforts of FE simulations 

are not appropriate for the presented application. 

4. CONCLUSION 

In conclusion, force sensor integration into rigid steel frameworks reduce the stiffness 

of the framework by 45%, and the insertion of flexure hinges by another approx. 3.6% for  

the presented setup and application. For the fast evaluation of the compliance of bar 

frameworks, the classic analytic approach by spring networks is sufficient, whereas FE 

simulations requests disproportionally higher efforts (minutes compared to weeks), while not 

leading to better results. The presented experiments show a straightforward approach to 
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measure spatial compliances of components in an assembled situation by multiple absolute 

laser interferometers that is also suitable for other applications. 
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SYMBOLS AND ABBREVIATIONS 

The following symbols and abbreviations are used in this manuscript: 

{∙} Coordinate frame: B: Base, T: Table, H: Up joint, S: Low joint, L: Laser, R: Reflector, 

(∙)T
B  Coordinate vector/tensor: top left reference frame, bottom right body frame, 

( ∙ ̂), ( ∙ ̌) Estimated values, and measured values, 

(∙)−𝑇 Transposed inverse, 

𝒒, 𝒙, 𝒍 Force sensor coordinates, Cartesian coordinates, and laser coordinates, 

𝒇q, 𝒇𝑥 Measured forces, and Cartesian forces, 

𝑱T, 𝑱L Jacobian of the table framework, and Jacobian of the laser configuration, 

∆𝒙T, 𝒐T, 𝑹T
BB  Pose, position, and orientation of the table platform in the base frame, 

𝑲q, 𝑲x Stiffness matrix in sensor coordinates, and in Cartesian coordinates, 

𝑵q, 𝑵x Compliance matrix in sensor coordinates, and in Cartesian coordinates, 

oSoH Framework design without sensors and without flexure hinges, 

wSoH Framework design with sensors and without flexure hinges, 

wSwH Framework design with sensors and with flexure hinges. 
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